

MPPT Solar Charge Controller

User Manual

Models:

XTRA1206N/XTRA2206N

XTRA1210N/XTRA2210N

XTRA3210N/XTRA4210N

XTRA3215N/XTRA4215N

XTRA3415N/XTRA4415N

Important Safety Instructions

Please keep this manual for future review.

This manual contains all instructions of safety, installation and operation for XTRA N series

Maximum Power Point Tracking (MPPT) controller ("the controller" as referred to in this manual).

General Safety Information

- > Read carefully all the instructions and warnings in the manual before installation.
- No user serviceable components inside the controller. DO NOT disassemble or attempt to repair the controller.
- Mount the controller indoors. Avoid exposure the components and do not allow water to enter the controller
- Install the controller in a well ventilated place. The controller's heat sink may become very hot during operation.
- > Suggest installing appropriate external fuses/breakers.
- Make sure to switch off all PV array connections and the battery fuse/breakers before controller installation and adjustment.
- > Power connections must remain tight to avoid excessive heating from loose connection.

CONTENTS

1 General Information	1
1.1 Overview	1
1.2 Characteristics	2
1.3 Naming Rules	3
1.4 Product Classification	3
2 Installation	5
2.1 Attentions	5
2.2 PV Array Requirements	5
2.3 Wire Size	9
2.4 Mounting	11
3 Display units	14
3.1 Basic Display unit(XDB1)	14
3.2 Standard Display unit (XDS1)	15
3.3 Adanced Display unit (XDS2)	19
4 Parameters Setting	25
4.1 Battery parameters	25
4.1.1 Supported battery types	25
4.1.2 Local setting	25
4.1.3 Remote Setting	28
4.2 Load working modes	31
4.2.1 LCD setting	31
4.2.2 RS485 communication setting	33
5 Others	35
5.1 Protection	35

F	Annex I Conversion Efficiency Curves	44
6	Technical Specifications	40
	5.3 Maintenance	.39
	5.2 Troubleshooting	.37

1 General Information

1 1 Overview

XTRA N series controller which can carry different display units(XDB1/XDS1/XDS2) adopt the advanced MPPT control algorithm, it can minimize the maximum power point loss rate and loss time, quickly track the maximum power point(MPP) of the PV array and obtain the maximum energy from solar array under any conditions; and it can increase the ratio of energy utilization in the solar system by 20%-30% compared with PWM charqing method.

Limiting the charging power & current and reducing charging power functions ensure the system stable with over PV modules in high temperature environment. IP33 Ingress protection and isolated RS485 design further improve the controller's reliability and meet the different application requirements.

XTRA N series controller owns self-adaptive three-stage charging mode based on digital control circuit, which can effectively prolong the lifespan of battery and significantly improve the system performance. It also has comprehensive electronic protection for overcharge, overdischarge, PV & battery reverse polarity etc, to ensure the solar system more reliable and more durable. This controller can be widely used for RV, household system, field monitoring and many other applications.

Features:

- CE certification(LVD EN/IEC62109,EMC EN61000-6-1/3)
- 100% charging and discharging in working environment temperature range
- Optional LCD display units (XDB1/XDS1/XDS2)
- High quality and low failure rate components of ST or IR to ensure service life
- Advanced MPPT technology & ultra-fast tracking speed guarantee tracking efficiency up to 99.5%
- Maximum DC/DC transfer efficiency is as high as 98.5%*, full load efficiency is up to 97.2%*
- · Advanced MPPT control algorithm to minimize the MPP lost rate and lost time

- Accurate recognizing and tracking of multi-peaks maximum power point.
- Wide MPP operating voltage range
- Support the lead-acid and lithium batteries: voltage parameters can be set on the controller
- Programmable temperature compensation
- Limit charging power & current over rated value
- Real-time energy statistics function
- Power reduction automatically over temperature value
- Multiple load work modes
- Comprehensive electronic protection
- Isolated RS485 with 5V/200mA protected output for no power devices, with Modbus protocol
- Support monitoring and setting the parameters via APP or PC software
- IP33[▲] Ingress protection

★ XTRA4415N@48V system

- For the BCV, FCV, LVD, and LVR, users can modify them on the local controller when the battery type is "USE."
- ▲ 3-protection against solid objects: protected against solids objects over 2.5mm.
 3-protected against sprays to 60°from the vertical.

1.2 Characteristics

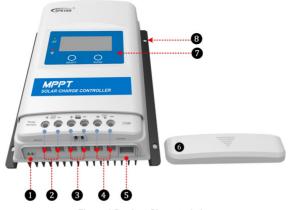
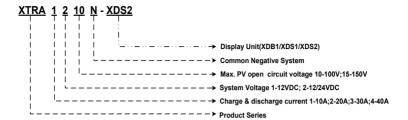



Figure 1 Product Characteristics

0	RTS*port	6	RS485 communication port		
2	PV Terminals	6	Terminal protection cover		
3	Battery Terminals	0	Display units		
4	Load Terminals	8	Mounting Hole Φ5mm		

★ If the temperature sensor is short circuit or damaged, the controller will charge or discharge according the voltage setting point at the default temperature setting of 25 °C(no temperature compensation).

1.3 Naming Rules

1.4 Product Classification

Classify	Model	Picture	Display
Basics	XTRA****N-XDB1	MPPT BASE CHANGES	LED Indicators: PV & battery working status Button: In manual work mode, it switch ON/OFF the load by press the button. Clear the error information.
Standard	XTRA****N-XDS1	MPPT Made reference	LED Indicators: PV & load working status Buttons: View or set the parameters or clear the error information. LCD: PV display: voltage/current /generated energy Battery display:

			voltage/current/temperature Load display: current/consumed energy/load working mode
Advanced	XTRA****N-XDS2	MPPT Man control of the control of t	LED Indicators: PV & battery & load working status Buttons: View or set the parameters or clear the error information. LCD: PV display: voltage/current /generated energy/power Battery display: voltage/current/temperature/capacity Load display: voltage/current/power /consumed energy/load working mode

2 Installation

2 1 Attentions

- Please read the entire installation instructions to get familiar with the installation steps before
 installation
- Be very careful when installing the batteries, especially flooded lead-acid battery. Please wear
 eve protection, and have fresh water available to wash and clean any contact with battery acid.
- Keep the battery away from any metal objects, which may cause short circuit of the battery.
- Explosive battery gases may come out from the battery during charging, so make sure ventilation condition is good.
- Ventilation is highly recommended if mounted in an enclosure. Never install the controller in a sealed enclosure with flooded batteries! Battery fumes from vented batteries will corrode and destroy the controller circuits.
- Loose power connections and corroded wires may result in high heat that can melt wire
 insulation, burn surrounding materials, or even cause fire. Ensure tight connections and use
 cable clamps to secure cables and prevent them from swaying in mobile applications.
- The controller can work with lead-acid battery and lithium battery within its control scope.
- Battery connection may be wired to one battery or a bank of batteries. The following
 instructions refer to a singular battery, but it is implied that the battery connection can be made
 to either one battery or a group of batteries in a battery bank.
- Multiple same models of controllers can be installed in parallel on the same battery bank to achieve higher charging current. Each controller must have its own solar module(s).
- Select the system cables according to 5A/mm² or less current density in accordance with Article 690 of the National Electrical Code, NFPA 70.

2.2 PV Array Requirements

(1) Serial connection (string) of PV modules

As the core component of solar system, controller could be suitable for various types of PV modules and maximize converting solar energy into electrical energy. According to the open circuit

voltage (V_{oc}) and the maximum power point voltage (V_{Mpp}) of the MPPT controller, the series number of different types PV modules can be calculated. The below table is for reference only.

XTRA1206N/2206N:

	36 cell	Voc<	48 cell	Voc<	54 cell	Voc	60 cell	Voc
System	23	3V	3	1V	<3	34V	<:	38V
voltage	Max.	Best	Max.	Best	Max.	Best	Max.	Best
12V	2	2	1	1	1	1	1	1
24V	2	2	-	-	_	-	-	-

System		cell <46V		cell <62V	Thin-Film Module		
voltage	Max.	Best	Max.	Best	Voc>80V		
12V	1	1	-	-	-		
24V	1	1	-	-	-		

NOTE: The above parameter values are calculated under standard test conditions (STC (Standard Test Condition): Irradiance 1000W/m², Module Temperature 25°C, Air Mass1.5.)

XTRA1210/2210/3210/4210N:

System		36 cell 48 cell 54 c Voc<23V Voc<31V Voc<								cell <38V
voltage	Max.	Best	Max.	Best	Max.	Best	Max.	Best		
12V	4	2	2	1	2	1	2	1		
24V	4	3	2	2	2	2	2	2		

System	72 · Voc<		96 Voc	Thin-Film Module Voc	
voltage	Max.	Best	Max.	Best	>80V
12V	2	1	1	1	1
24V	2	1	1	1	1

NOTE: The above parameter values are calculated under standard test conditions (STC (Standard Test Condition): Irradiance 1000W/m², Module Temperature 25°C, Air Mass1.5.)

XTRA3215/4215N:

System		36 (Voc<		-	48 cell Voc<31V		54 cell Voc<34V		60 cell Voc<38V	
voltage	Max.	Best	Max.	Best	Max.	Best	Max.	Best		
12\	/	4	2	2	1	2	1	2	1	
24\	/	6	3	4	2	4	2	3	2	

System		cell <46V	96 Voc	Thin-Film Module Voc		
voltage	Max.	Best	Max.	Best	>80V	
12V	2	1	1	1	1	
24V	3	2	2	1	1	

NOTE: The above parameter values are calculated under standard test conditions (STC (Standard Test Condition): Irradiance 1000W/m², Module Temperature 25°C, Air Mass1.5.)

XTRΔ3415/4415N·

System	36 · Voc<		48 cell Voc≤31V		54 cell Voc≪34V		60 cell Voc<38V	
voltage	Max.	Best	Max.	Best	Max.	Best	Max.	Best
12V	4	2	2	1	2	1	2	1
24V	6	3	4	2	4	2	3	2
48V	6	5	4	3	4	3	3	3

System	72 · Voc<			cell <62V	Thin-Film Module Voc
voltage	Max.	Best	Max.	Best	>80V
12V	2	1	1	1	1
24V	3	2	2	1	1
48V	3	2	2	2	1

NOTE: The above parameter values are calculated under standard test conditions (STC (Standard Test Condition): Irradiance 1000W/m², Module Temperature 25°C, Air Mass1.5.)

(2) Maximum PV array power

The MPPT controller has the function of charging current/power-limiting, that is, during the charging process, when the charging current or power exceeds the rated charging current or power, the controller will automatically limit the charging current or power to the rated range, which can effectively protect the charging parts of controller, and prevent damages to the controller due to the connection of some over-specification PV modules. The actual operation of PV array is as follows:

Condition 1:

Actual charging power of PV array ≤ Rated charging power of controller

Condition 2:

Actual charging current of PV array ≤ Rated charging current of controller

When the controller operates under "Condition 1" or "Condition 2", it will carry out the charging as per the actual current or power; at this time, the controller can work at the maximum power point of PV array.

When the power of PV is not greater than the rated charging power, but the maximum open-circuit voltage of PV array is more than 60V(XTRA**06N)/100V(XTRA**10N)/150V(XTRA**15N) (at the lowest environmental temperature), the controller may be damaged

Condition 3:

Actual charging power of PV array>Rated charging power of controller

Condition 4:

Actual charging current of PV array>Rated charging current of controller

When the controller operates under "Condition 3" or "Condition 4", it will carry out the charging as per the rated current or power

When the power of PV module is greater than the rated charging power, and the maximum open-circuit voltage of PV array is more than 60V(XTRA**06N)/100V(XTRA**10N)/150V(XTRA**15N) (at the lowest environmental temperature), the controller may be damaged.

According to "Peak Sun Hours diagram", if the power of PV array exceeds the rated charging power of controller, then the charging time as per the rated power will be prolonged, so that more energy can be obtained for charging the battery. However, in the practical application, the maximum power of PV array shall be not greater than 1.5 x the rated charging power of controller. If the maximum power of PV array exceeds the rated charging power of controller too much, it will not only cause the waste of PV modules, but also increase the open-circuit voltage of PV array due to the influence of environmental temperature, which may make the probability of damage to the controller rise. Therefore, it is very important to configure the system reasonably. For the recommended maximum power of PV array for this controller, please refer to the table below:

Model	Rated Charge	Rated Charge	Max. PV Array	Max. PV open
Wodei	Current	Power	Power	circuit voltage
XTRA1206N	10A	130W/12V	195W/12V	
XTRAT200N	IUA	260W/24V	390W/24V	46V [®]
VTDAGGGN	204	260W/12V	390W/12V	60V [®]
XTRA2206N	20A	520W/24V	780W/24V	
XTRA1210N	10A	130W/12V	195W/12V	92V [®]
ATRAIZIUN	IUA	260W/24V	390W/24V	52V

F	I	I		l
XTRA2210N	I 20A	260W/12V	390W/12V	100V [®]
ATRAZZIUN		520W/24V	780W/24V	
XTRA3210N	VTD 40040N	390W/12V	580W/12V	
ATRASZTUN	30A	780W/24V	1170W/24V	
XTRA4210N	40A	520W/12V	780W/12V	
ATRA42TUN	40A	1040W/24V	1560W/24V	
VTD A 224EN	TRA3215N 30A	390W/12V	580W/12V	
ATRASZISM		780W/24V	1170W/24V	
XTRA4215N	40A	520W/12V	780W/12V	
A1RA4215IN	40A	1040W/24V	1560W/24V	
		390W/12V	580W/12V	
XTRA3415N	30A	780W/24V	1170W/24V	138V [®]
XTRA34T5IN	30A	1170W/36V	1755W/36V	150V [®]
		1560W/48V	2340W/48V	
		520W/12V	780W/12V	
XTRA4415N	A 4 4 4 5 N	1040W/24V	1560W/24V	
A I NA44 I 3 N	40A	1560W/36V	2340W/36V	
		2080W/48V	3120W/48V	

① At 25°C environment temperature

2.3 Wire Size

The wiring and installation methods must conform to all national and local electrical code requirements.

PV Wire Size

Since PV array output can vary due to the PV module size, connection method or sunlight angle, the minimum wire size can be calculated by the lsc* of PV array. Please refer to the value of lsc in the PV module specification. When PV modules connect in series, the lsc is equal to a PV modules lsc. When PV modules connect in parallel, the lsc is equal to the sum of the PV modules'lsc. The lsc of the PV array must not exceed the controller's maximum PV input current. Please refer to the table as below:

NOTE: All PV modules in a given array are assumed to be identical.

* Isc=short circuit current(amps) Voc=open circuit voltage.

Model	Max. PV input current	Max. PV wire size*
XTRA1206N	10A	4mm²/12AWG
XTRA1210N	IUA	411111 / 12AVVG

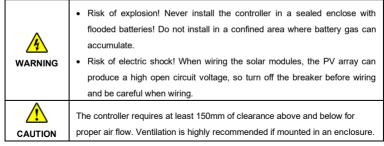
⁽²⁾ At minimum operating environment temperature

XTRA2206N XTRA2210N	20A	6mm²/10AWG
XTRA3210N XTRA3215N XTRA3415N	30A	10mm²/8AWG
XTRA4210N XTRA4215N XTRA4415N	40A	16mm²/6AWG

* These are the maximum wire sizes that will fit the controller terminals.

When the PV modules connect in series, the open circuit voltage of the PV array must not exceed 46V (XTRA**06N), 92V (XTRA**10N), 138V (XTRA**15N) at 25°C environment temperature.

Battery and Load Wire Size


The battery and load wire size must conform to the rated current, the reference size as below:

Model	Rated charge current	Rated discharge current	Battery wire size	Load wire size
XTRA1206N XTRA1210N	10A	10A	4mm²/12AWG	4mm²/12AWG
XTRA2206N XTRA2210N	20A	20A	6mm²/10AWG	6mm²/10AWG
XTRA3210N XTRA3215N XTRA3415N	30A	30A	10mm²/8AWG	10mm²/8AWG
XTRA4210N XTRA4215N XTRA4415N	40A	40A	16mm²/6AWG	16mm²/6AWG

- The wire size is only for reference. If there is a long distance between the PV
 array and the controller or between the controller and the battery, larger
 wires can be used to reduce the voltage drop and improve performance.
- For the battery, the recommended wire will be selected according to the conditions that its terminals are not connected to any additional inverter.

2.4 Mounting

Installation Procedure:

Figure 2-1 Mounting

Step 1: Determination of Installation Location and Heat-dissipation Space

Determination of installation location: The controller shall be installed in a place with sufficient air flow through the radiators of the controller and a minimum clearance of 150 mm from the upper and lower edges of the controller to ensure natural thermal convection. See Figure 2-1: Mounting

If the controller is to be installed in an enclosed box, it is important to ensure reliable heat dissipation through the box.

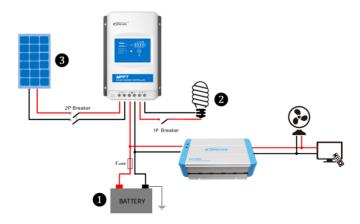
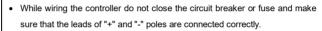



Figure 2-2 Schematic of wiring diagram

Step 2: Connect the system in the order of **①** battery **→②** load **→ ③**PV array in accordance with Figure 2-2."Schematic Wiring Diagram" and disconnect the system in the reverse order **③②①**.

- A fuse which current is 1.25 to 2 times the rated current of the controller, must be installed on the battery side with a distance from the battery not greater than 150 mm.
- If the controller is to be used in an area with frequent lightning strikes or unattended area, it must install an external surge arrester.
- If an inverter is to be connected to the system, connect the inverter directly to the battery, not to the load side of the controller.

Step 3: Grounding

XTRA N series is a common-negative controller, where all the negative terminals of PV array, battery and load can be grounded simultaneously or any one of them will be grounded. However, according to the practical application, all the negative terminals of PV array, battery and load can also be ungrounded, but the grounding terminal on its shell must be grounded, which may effectively shield the electromagnetic interference from the outside, and prevent some electric shock to human body due to the electrification of the shell.

For common-negative system, such as motorhome, it is recommended to use a common-negative controller; but if in the common-negative system, some

common-positive equipment are used, and the positive electrode is grounded,
the controller may be damaged.

Step 4: Connect accessories

· Connect the remote temperature sensor cable

Temperature Sensor

(Model:RT-MF58R47K3.81A)

Remote Temperature Sensor Cable (Optional)

(Model:RTS300R47K3.81A)

Connect the remote temperature sensor cable to the interface ① and place the other end close to the battery.

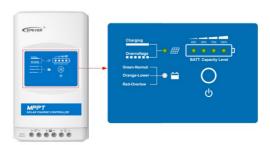
If the remote temperature sensor is not connected to the controller, the default setting for battery charging or discharging temperature is 25 °C without temperature compensation.

Connect the accessories for RS485 communication

Refer to chaper4 "Control Parameters Setting".

Step 5: Powered on the controller

Closing the battery fuse will switch on the controller. Then check the status of the battery indicator (the controller is operating normally when the indicator is lit in green). Close the fuse and circuit breaker of the load and PV array. Then the system will be operating in the preprogrammed mode.



CAUTION

If the controller is not operating properly or the battery indicator on the controller shows an abnormality, please refer to 5.2 "Troubleshooting".

3 Display units

3.1 Basic Display unit(XDB1)


(1) Charging and battery LED indicator

Indicator	Color	Status	Information
	Green	On Solid	PV charges the battery with a low current
•	Green	OFF	No sunlight Connection error Low PV voltage
	Green	Slowly Flashing(1Hz)	Normal charging
	Green	Fast Flashing (4Hz)	PV Over voltage
	Green	On Solid	Normal
	Green	Slowly Flashing (1Hz)	Full
	Green	Fast Flashing (4Hz)	Over voltage
	Orange	On Solid	Under voltage
	Red	On Solid	Over discharged
	Red	Slowly Flashing(1Hz)	Battery Overheating Lithium battery Low temperature
All LED indicators fast flashing at the same time		System voltage error®	
All LED indicators last liasning at the same time		Controller Overheating	

① When a lead-acid battery is used, the controller doesn't have the low temperature protection.

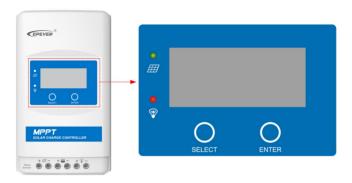
② When a lithium battery is used, the system voltage can't be identified automatically.

(2) Battery Capacity Level Indicator

Battery Capacity Level (BCL)

Indicator	Color	Status	Information
☆000	Green	25% Indicator slowly flashing	0< BCL <25%
•☆○○	Green	50% Indicator slowly flashing 25% Indicator on solid	25%≤BCL <50%
••☆○	Green	75% Indicator slowly flashing 25%,50% Indicators on solid	50%≤BCL <75%
●●●☆	Green	100% Indicator slowly flashing 25%,50%,75% Indicators on solid	75%≤BCL <100%
••••	Green	25%,50%,75%,100%Indicators on solid	100%

[&]quot;o" Indicator is OFF; "•"Indicator is on Solid; "☆" Indicator is slowly flashing.

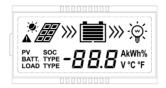

Load status

D. 11	Green	on solid	The load is ON
Battery Capacity Level	Green	OFF	The load is OFF

(3) Button

In the manual mode, it can control On/Off of the load via the

3.2 Standard Display unit (XDS1)


(1) LED indicator

Indicator	Color	Status	Instruction
	Green	On Solid	PV charges the battery with a low current
	Green	OFF	No sunlight Connection error Low PV voltage
	Green	Slowly Flashing(1Hz)	Normal charging
	Green	Fast Flashing (4Hz)	PV Over voltage
	Red	On Solid	Load ON
W	Red	OFF	Load OFF

(2) Button

Mode	Note
Load ON/OFF	In load manual mode, it can turn the load On/Off via the ENTER button.
Clear Fault	Press the ENTER button
Browsing Mode	Press the SELECT button
Setting Mode	Press the ENTER button and hold on 5s to enter the setting mode Press the SELECT button to set the parameters, Press the ENTER button to confirm the setting parameters or no operation for
	10s, it will exit the setting interface automatically.

(3) Interface

1) Status Description

Item	Icon	Status
PV array	*=	Day

)	Night
		No charging
	# >>> 	Charging
	PV	PV Voltage, Current, Generated energy
		Battery capacity, In Charging
Battery	BATT.	Battery Voltage, Current, Temperature
	BATT. TYPE	Battery Type
		Load ON
Load	3)	Load OFF
	LOAD	Current/Consumed energy/Load mode

2) Browse interface

Press the button to cycle display the following interfaces.

3) Load parameter dispaly

Display: Current/Consumed energy/Load working mode-Timer1/ Load working mode-Timer2

4) Setting

(1) Clear the generated energy

Operation:

Step 1: Press the button and hold 5s under the PV generated energy interface and the value will be flashing.

Step 2: Press the ENTER button to clear the generated energy.

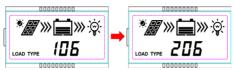
(2) Switch the battery temperature unit

Press the enter button and hold 5s under the battery temperature interface.

3 Battery type Sealed(default) Gel Flooded LEP15S LFP8S LEP4S LFP16S LCNM3S LCNM6S LCNM14S LCNM13S LCNM7S User

Note: If the controller supports 48V system voltage, the battery type will display LiFePO4 F15/F16, and Li(NiCoMn)O2 N13/N14.

Step1: Press the ENTER button and hold 5s under the battery voltage interface.

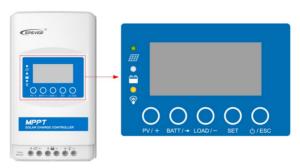

Step2: Press the SELECT button when the battery type interface is flashing.

Step3: Press the ENTER button to confirm the battery type.

Please refer to chapter 4.1 for the battery parameters setting, when the battery type is User.

4 Load working mode

Operation:


Step1: Press the ENTER button and hold 5s under the load mode interface.

Step2: Press the SELECT button when the load mode interface is flashing.

Step3: Press the ENTER button to confirm the load mode.

NOTE: Please refer to chapter4.2 for the load working modes.

3.3 Adanced Display unit (XDS2)

(1) Indicator

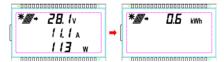
Indicator	Color	Status	Instruction	
	Green	On Solid	PV charges the battery with a low current	
	Green	OFF	No sunlight Connection error Low PV voltage	
	Green	n Slowly Flashing(1Hz)	Normal charging	
	Green	Fast Flashing(4Hz)	PV Over voltage	
	Green	On Solid	Normal	
	Green	Slowly Flashing(1Hz)	Full	
	Green	Fast Flashing(4Hz)	Over voltage	
<u> </u>	Orange	On Solid	Under voltage	
	Red	On Solid	Over discharged	
	Red	Slowly Flashing(1Hz)	Battery Overheating Lithium battery Low temperature®	
	Yellow	On Solid	Load ON	
\tag{\tag{1}}	Yellow OFF		Load OFF	
	PV&BATTLE	D fast flashing	Controller Overheating System voltage error®	

① When a lead-acid battery is used, the controller doesn't have the low temperature protection.

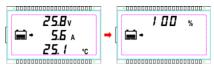
(2) Button

		PV browsing interface	
	Press the button	Setting data +	
PV/+	Press the button and hold 5s	Setting the LCD cycle time	
	David the house	BATT browsing interface	
	Press the button	Cursor displacement during setting	
BATT/→	Press the button and hold	Setting the battery type, battery capacity level	
	5s	and temperature unit.	
	Press the button	Controller load browsing interface	
	Press the button	Setting data -	
LOAD/-	Press the button and hold	Setting the load working mode	
	5s	Octaing the load working mode	
	Press the button	Enter into setting interface	

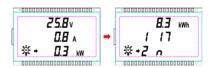
⁽²⁾ When a lithium battery is used, the system voltage can't be identified automatically


		Setting interface switch to the browsing interface				
		Setting parameter as enter button				
O / ESC	Press the button	Exit the setting interface				

(3) Display

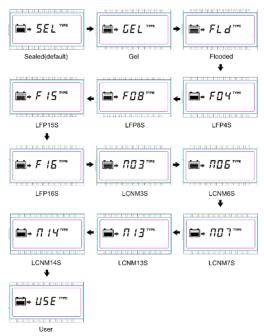

Icon	Information	lcon	Information	Icon	Information
* ==	Day	*#	Not charging	(c)	Not discharging
J	Night	***	Charging	i i	Discharging

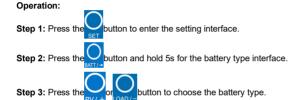
1) PV parameters


Display: Voltage/Current/Power/Generated Energy

2) Battery parameters

Display: Voltage/Current/Temperature/Battery capacity level


3) Load parameters


Display: Voltage/Current/Power/ Consumed energy/Load working mode-Timer1/ Load working mode-Timer2

(4) Setting parameters

1) Battery type

Note: If the controller supports 48V system voltage, the battery type will display LiFePO4 F15/F16, and Li(NiCoMn)O2 N13/N14.

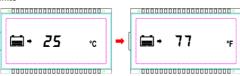
Step 4: Press the button to confirm the battery type.

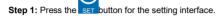
CAUTION

Please refer to chapter 4.1 for the battery control voltage setting, when the battery type is User.

2) Battery capacity


Operation:


Step 2: Press the button and hold 5s for the battery type interface.


Step 4: Press the PV/+ or LOAD/-button to set the battery capacity.

3) Temperature units

Operation:

Step 2: Press the button and hold 5s for the battery type interface.

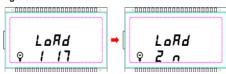
Step 4: Press the PV/+or LOAD/-button to set the temperature units.

Step 5: Press the **SET** button to confirm the parameters.

4) LCD cycle time

NOTE: The LCD cycle default time is 2s, the setting time range is $0\sim$ 20s.

Operation:


Step 1: Press the SET button for the setting interface.

Step 2: Press the PV/+ button and hold 5s for the LCD cycle time interface.

Step 3: Press the PV/+orLoad/-button to set the LCD cycle time.

Step 4: Press the **SET** button to confirm the parameters.

5) Local load working mode

Operation:

Step 1: Press the SET button for the setting interface.

Step 2: Press the DADY button and hold 5s for the load working mode interface.

Step 3: Press the PV/+ or LOAD/- button to set the working mode...

Step 4: Press the SET button to confirm the parameters.

NOTE: Please refer to chapter 4.2 for the load working mode.

4 Parameters Setting

4.1 Battery parameters

4.1.1 Supported battery types

		Sealed(default)			
1	Battery	Gel			
		Flooded			
	Lithium	LiFePO4(4S/8S/15S/16S)			
2	battery	Li(NiCoMn)O2 (3S/6S/7S/13S/14S)			
3	User				

Note: If the controller supports 48V system voltage, the battery type will display LiFePO4 F15/F16, and Li(NiCoMn)O2 N13/N14.

4.1.2 Local setting

WARNING

When the default battery type is selected, the battery voltage parameters cannot be modified. To change these parameters, select the "USE" type.

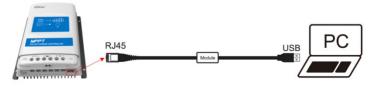
Step1: Enter the "USE" battery type. For XDS1 module, detail operations of entering the "USE" battery type refer to the chapter 3.2. For XDS2 module, detail operations of entering the "USE" battery type refer to the chapter 3.3.

Step2: Under the "USE" battery type, the battery parameters that can be local set are shown in the table below:

Parameters	Default	Range	Settings on XDS1 module	Settings on XDS2 module
sys∗	12VDC	12/24/36 /48VDC	1) Under the "USE" battery type, press the enter button to enter the "SYS" interface. 2) Press the button again to display the current "SYS" value. 3) Press the button to modify the parameter. 4) Press the button to confirm and enter the next parameter.	1) Under the "USE" battery type, press the button to enter the "SYS" interface. 2) Press the button again to display the current "SYS" value. 3) Press the parameter. 4) Press the button to confirm and enter the next parameter.
BCV	14.4V	9~17V		
FCV	13.8V	9~17V	5) Press the button again to display the current	5) Press the button again to display the current
LVR	12.6V	9~17V	voltage value.	voltage value.
LVD	11.1V	9~17V	voltage value. 6) Press the button to modify the parameter(short press to increase 0.1V, long press to decrease 0.1V). 7) Press the button to confirm and enter the next parameter.	6) Press the parameter (press button to increase 0.1V, press button to decrease 0.1V). 7) Press the set button to confirm and enter the next parameter.
LEN	NO	YES/NO	Press the switch status.	Press the properties button to modify the switch

Note: It exists automatically from the current interface	status.
after no operation of more than 10S.	Note: It exists automatically from the current interface
	after no operation of more than 10S.

^{*}The SYS value can only be modified under the non-lithium "USE" type. That is, the battery type is Sealed, Gel, or Flooded before entering the "USE" type, the SYS value can be modified; if it is lithium battery type before entering the "USE" type, the SYS value cannot be modified.


Only the above battery parameters can be set on the local controller, and the remaining battery parameters follow the following logic (the voltage level of 12V system is 1, the voltage level of 24V system is 2, the voltage level of 48V system is 4).

Battery type Battery parameters	Sealed/Gel/Flooded User	LiFePO4 User	Li(NiCoMn)O2 User
Over voltage disconnect voltage	BCV+1.4V*voltage level	BCV+0.3V*voltage level	BCV+0.3V*voltage level
Charging limit voltage	BCV+0.6V*voltage level	BCV+0.1V*voltage level	BCV+0.1V*voltage level
Over voltage reconnect voltage	BCV+0.6V*voltage level	BCV+0.1V*voltage level	Boost charging voltage
Equalize charging voltage	BCV+0.2V*voltage level	Boost charging voltage	Boost charging voltage
Boost reconnect charging voltage	FCV-0.6V*voltage level	FCV-0.6V*voltage level	FCV-0.1V*voltage level
Under voltage warning reconnect voltage	UVW+0.2V*voltage level	UVW+0.2V*voltage level	UVW+1.7V*voltage level
Under voltage warning voltage	LVD+0.9V*voltage level	LVD+0.9V*voltage level	LVD+1.2V*voltage level
Discharging limit voltage	LVD-0.5V*voltage level	LVD-0.1V*voltage level	LVD-0.1V*voltage level

4.1.3 Remote Setting

1) Setting the battery parameters by PC software

Connect the controller's RJ45 interface to the PC's USB interface via a USB to RS485 cable (model: CC-USB-RS485-150U). When selecting the battery type as "USE," set the voltage parameters by the PC software. Refer to the cloud platform manual for detail.

2) Setting the battery parameters by APP

Connect the controller to the WIFI module through a standard network cable or connect to the Bluetooth module by Bluetooth signal. When selecting the battery type as "USE," set the voltage parameters by the APP. Refer to the cloud APP manual for details.

3) Controller parameters

♦ Battery voltage parameters

Measure the parameters in the condition of 12V/25°C. Please double the values in the 24V system, and multiplies the values by 4 in the 48V system.

Battery type Battery parameters	Sealed	GEL	FLD	User
Over voltage disconnect voltage	16.0V	16.0V	16.0V	9~17V
Charging limit voltage	15.0V	15.0V	15.0V	9~17V
Over voltage reconnect voltage	15.0V	15.0V	15.0V	9~17V
Equalize charging voltage	14.6V		14.8V	9~17V
Boost charging voltage	14.4V	14.2V	14.6V	9~17V

Float charging voltage	13.8V	13.8V	13.8V	9~17V
Boost reconnect charging voltage	13.2V	13.2V	13.2V	9~17V
Low voltage reconnect voltage	12.6V	12.6V	12.6V	9~17V
Under voltage warning reconnect voltage	12.2V	12.2V	12.2V	9~17V
Under voltage warning voltage	12.0V	12.0V	12.0V	9~17V
Low voltage disconnect voltage	11.1V	11.1V	11.1V	9~17V
Discharging limit voltage	10.6V	10.6V	10.6V	9~17V
Equalize Duration	120 minutes	-	120 minutes	0∼180 minutes
Boost Duration	120 minutes	120 minutes	120 minutes	10∼180 minutes

When the battery type is "USE," the battery voltage parameters follow the following logic:

- A. Over Voltage Disconnect Voltage > Charging Limit Voltage ≥ Equalize Charging Voltage
 ≥ Boost Charging Voltage ≥ Float Charging Voltage > Boost Reconnect Charging Voltage.
- B. Over Voltage Disconnect Voltage > Over Voltage Reconnect Voltage
- C. Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage.
- D. Under Voltage Warning Reconnect Voltage>Under Voltage Warning Voltage≥

 Discharging Limit Voltage;
- E. Boost Reconnect Charging voltage >Low Voltage Reconnect Voltage.

♦ Lithium Battery voltage parameters

Battery type	LFP						
Battery parameters	LFP4S	LFP8S	LFP15S	LFP16S	User [®]		
Over voltage disconnect voltage	14.8V	29.6 V	55.5V	59.2V	9~17V		
Charging limit voltage	14.6 V	29.2 V	54.7V	58.4V	9~17V		
Over voltage reconnect voltage	14.6 V	29.2 V	54.7V	58.4V	9~17V		
Equalize charging voltage	14.5 V	29 .0 V	54.3V	58.0V	9~17V		

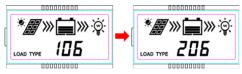
Boost charging voltage	14.5 V	29.0 V	54.3V	58.0V	9~17V
Float charging voltage	13.8 V	27.6 V	51.7V	55.2V	9~17V
Boost reconnect charging voltage	13.2 V	26.4 V	49.5V	52.8V	9~17V
Low voltage reconnect voltage	12.8 V	25.6 V	48.0V	51.2V	9~17V
Under voltage warning reconnect voltage	12.2 V	24.4 V	45.7V	48.8V	9~17V
Under voltage warning voltage	12.0 V	24.0 V	45.0V	48.0V	9~17V
Low voltage disconnect voltage	11.1 V	22.2 V	41.6V	44.4V	9~17V
Discharging limit voltage	11.0 V	22.0 V	41.2V	44.0V	9~17V

① The battery parameters under the "User" battery type is 9-17V for LFP4S. They should x2 for LFP8S, and x4 for LFP15S/LFP16S.

Battery type	LCNM						
Battery parameters	LCNM3S	LCNM6S	LCNM7S	LCNM13S	LCNM14S	User®	
Over voltage							
disconnect	12.8 V	25.6 V	29.8 V	55.4V	59.7V	9~17V	
voltage							
Charging limit	40.01/	05.01/	00.41/	54.0)/	50.01/	0.471/	
voltage	12.6 V	25.2 V	29.4 V	54.6V	58.8V	9~17V	
Over voltage	40.51/	05.01/	00.41/	54.417	50.01/	0.471/	
reconnect voltage	12.5 V	25.0 V	29.1 V	54.1V	58.3V	9~17V	
Equalize charging	40.51/	05.01/	00.41/	54.417	50.01/	0.471/	
voltage	12.5 V	25.0 V	29.1 V	54.1V	58.3V	9~17V	
Boost charging	40.51/	05.01/	00.41/	54.417	50.01/	0.471/	
voltage	12.5 V	25.0 V	29.1 V	54.1V	58.3V	9~17V	
Float charging	40.01/	04.41/	00.41/	50.0)/	50.01/	0.471/	
voltage	12.2 V	24.4 V	28.4 V	52.8V	56.9V	9~17V	
Boost reconnect	40.434	04.014	00.01/	50.07	50.41	0 4714	
charging voltage	12.1 V	24.2 V	28.2 V	52.4V	56.4V	9~17V	
Low voltage							
reconnect voltage	10.5 V	21.0 V	24.5 V	45.5V	49.0V	9~17V	
Under voltage							
warning reconnect	12.2 V	24.4 V	28.4 V	52.8V	56.9V	9~17V	

voltage						
Under voltage warning voltage	10.5 V	21.0 V	24.5 V	45.5V	49.0V	9~17V
Low voltage disconnect voltage	9.3 V	18.6 V	21.7 V	40.3V	43.4V	9~17V
Discharging limit voltage	9.3 V	18.6 V	21.7 V	40.3V	43.4V	9~17V

- ① The battery parameters under the "User" battery type is 9~17V for LFP4S. They should x2 for LEP8S, and x4 for LEP15S/LEP16S.
- When the battery type is "USE." the Lithium battery voltage parameters follow the following logic:
 - A. Over Voltage Disconnect Voltage>Over Charging Protection Voltage(Protection Circuit Modules(BMS))+0.2V
 - B. Over Voltage Disconnect Voltage Reconnect Voltage = Charging Limit Voltage ≥ Equalize Charging Voltage = Boost Charging Voltage ≥ Float Charging Voltage>Boost Reconnect Charging Voltage:
 - C. Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage.
 - D. Under Voltage Warning Reconnect Voltage>Under Voltage Warning Voltage≥ Discharging Limit Voltage;
 - Boost Reconnect Charging voltage > Low Voltage Reconnect Voltage:
 - Low Voltage Disconnect Voltage ≥ Over Discharging Protection Voltage (BMS)+0.2V

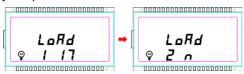

CAUTION

The required accuracy of BMS is no higher than 0.2V. We will not assume responsibility for the abnormal when the accuracy of BMS is higher than 0.2 v.

4.2 Load working modes

4.2.1 LCD setting

1) XDS1 display and operation


When the LCD shows above interface, operate as following:

Step1: Press the ENTER button and hold 5s for the load mode interface.

Step2: Press the select button when the load mode interface is flashing.

Step3: Press the ENTER button to confirm the load working modes.

2) XDS2 display and operation

When the LCD shows above interface, operate as following:

Step1: Press the setting interface.

Step2: Press the LOAD /- button and hold 5s for the load working mode interface.

Step3: Press the PV/+ or LOAD/-button to set the load working modes.

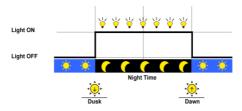
Step4: Press the SET button to confirm the parameters.

3) Load working mode

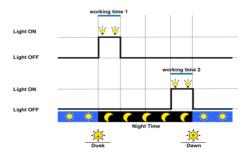
1**	Timer 1	2**	Timer 2
100	Light ON/OFF	2 n	Disabled
101	Load will be on for 1 hour after sunset	201	Load will be on for 1 hour before sunrise
102	Load will be on for 2 hours after sunset	202	Load will be on for 2 hours before sunrise
103 ~ 113	Load will be on for $3\!\sim\!13$ hours after sunset	203 ~213	Load will be on for $3\!\sim\!13$ hours before sunrise
114	Load will be on for 14 hours after sunset	214	Load will be on for 14 hours before sunrise
115	Load will be on for 15 hours after sunset	215	Load will be on for 15 hours before sunrise
116	Test mode	2 n	Disabled
117	Manual mode(Default load ON)	2 n	Disabled

Please set Light ON/OFF, Test mode and Manual mode via Timer1. Timer2 will

CAUTION	be disabled and display "2 n ".


4.2.2 RS485 communication setting

1) Load working mode


Manual Control (default)

Control ON/OFF of the load via the button or remote commands (e.g., APP or PC software).

Light ON/OFF

Light ON+ Timer


Time Control

Control the load ON/OFF time through setting the real-time clock.

2) Load working mode settings

(1) PC setting

Connect the controller's RJ45 interface to the PC's USB interface via a USB to RS485 cable (model: CC-USB-RS485-150U). Set the load mode by the PC software. Refer to the cloud platform manual for detail.

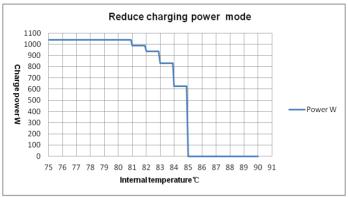
(2)APP software setting

Connect the controller to the WIFI module through a standard network cable or connect to the Bluetooth module by Bluetooth signal. Set the load mode by the APP. Refer to the cloud APP manual for details

(3)MT50 Setting

For detailed setting methods, please refer to the instructions or contact aftersales support.

5 Others


5.1 Protection

PV Over	When the charging current or power of the PV array exceeds the controller's rated current or power, it will be charge at the rated current or power.
Current/power	WARNING: When the PV's charging current is greater than the rated current, the PV's open circuit voltage
	cannot greater than the "maximum PV open-circuit voltage", otherwise the controller may be damaged.
	When not in PV charging state, the controller will not be damaged in case of a short-circuiting in the PV array.
PV Short Circuit	WARNING: It is forbidden to short-circuit the PV array during charging. Otherwise, the controller may be
	damaged.
	When the polarity of the PV array is reversed, the controller may not be damaged and can continue to operate normally after
	the polarity is corrected.
PV Reverse Polarity	CAUTION: When the PV array is connected reversely to the controller, and the PV array's actual operating
	power is greater than 1.5 times the rated charging power of the controller, the controller will be damaged.
Night Reverse Charging	Prevents the battery from discharging to the PV module at night.
	Fully protected against battery reverse polarity; no damage will occur to the battery. Correct the miswire to resume normal
D D	operation.
Battery Reverse Polarity	WARNING: Limited to the characteristic of lithium battery, when the PV connection is correct and battery
	connection reversed, the controller will be damaged.
Detter Oran Vellen	When the battery voltage reaches the over voltage disconnect voltage, it will automatically stop battery charging to prevent
Battery Over Voltage	battery damage caused by over-charging.
Battery Over	When the battery voltage reaches the low voltage disconnect voltage, it will automatically stop battery discharging to prevent

caused by over-discharging. (Any controller connected loads will be disconnected. Loads directly connected
not be affected and may continue to discharge the battery.)
an detect the battery temperature through an external temperature sensor. The controller stops working
ture exceeds 65 °C and restart to work when its temperature is below 55 °C.
rature detected by the optional temperature sensor is lower than the Low Temperature Protection Threshold
roller will stop charging and discharging automatically. When the detected temperature is higher than the
oller will be working automatically (The LTPT is 0 $^{\circ}$ C by default and can be set within the range of 10 \sim -
s short circuited (The short circuit current is ≥ 4 times the rated controller load current), the controller will
off the output. If the load reconnects the output automatically five times (delay of 5s, 10s, 15s, 20s, 25s), it
red by pressing the Load button, restarting the controller or switching from Night to the Day (nighttime > 3
overloading (The overload current is ≥ 1.05 times the rated load current), the controller will automatically
. If the load reconnects automatically five times (delay of 5s, 10s, 15s, 20s, 25s), it needs to be cleared by
d button restarting the controller, switching from Night to Day (nighttime > 3 hours).
able to detect the temperature inside the battery. The controller stops working when its temperature
nd restart to work when its temperature is below 75 °C.
uitry of the controller is designed with Transient Voltage Suppressors (TVS) which can only protect against
ge pulses with less energy. If the controller is to be used in an area with frequent lightning strikes, it is
install an external surge arrester.

★When the internal temperature is 81°C, the reduce charging power mode which reduce the charging power of 5%,10%,20%,40% every increase 1 °C is turned on. If the internal temperature is greater than 85°C, the controller will stop charging. When the temperature declines to be below 75 °C, the controller will resume.

For example XTRA4215N 24V system:

5.2 Troubleshooting

Possible reasons	Faults	Troubleshooting
PV array disconnection	Charging LED indicator off during daytime when sunshine falls on PV modules properly	Confirm that PV wire connections are correct and tight
Battery voltage is lower than 8V	Wire connection is correct, the controller is not working.	Please check the voltage of battery. At least 8V voltage to activate the controller.
Battery over voltage	XDB1: Charging indicator Green fast flashing XDS1: Battery level shows full, battery frame and fault icon blink. XDS2: Charging indicator Green fast flashing	Check if battery voltage is higher than OVD (over voltage disconnect voltage), and disconnect the PV.

	Battery level shows full, battery frame and fault icon blink.	
Battery over discharged	XDB1: Battery indicator Red on solid XDS1: Battery level shows empty, battery frame and fault icon blink. XDS2: Charging indicator Red on solid Battery level shows empty, battery frame and fault icon blink.	When the battery voltage is restored to or above LVR(low voltage reconnect voltage), the load will recover
Battery Overheating	XDB1: Battery indicator Red slow flashing XDS1: Battery frame and fault icon blink. XDS2: Battery indicator Red slow flashing Battery frame and fault icon blink.	The controller will automatically turn the system off. When the temperature declines to be below 55 °C, the controller will resume.
Controller Overheating	XDB1: PV/BATT(orange)/Battery capacity	When heat sink of controller exceeds 85°C, the controller will automatically cut off input and output circuit. When the temperature below 75°C, the controller will resume to work.
System voltage error	lever(four) indicator fast flashing XDS2: PV/BATT indicator fast flashing	①Check whether the battery voltage match with the controller working voltage. ②Please change to a suitable battery or reset the working voltage.
Load Overload	1. The load is no output 2.XDS1/XDS2:	①Please reduce the number of electric equipment. ②Restart the controller. ③Wait for one night-day cycle

Load Short Circuit	Load and fault icon blink	(night time>3 hours). ①Check carefully loads connection, clear the fault. ②Restart the controller. ③Wait for one night-day cycle (night time>3 hours).
-----------------------	---------------------------	--

5.3 Maintenance

The following inspections and maintenance tasks are recommended at least two times per year for hest performance

- Make sure controller firmly installed in a clean and dry ambient.
- Make sure no block on air-flow around the controller. Clear up any dirt and fragments on heat sink
- Check all the naked wires to make sure insulation is not damaged for sun exposure, frictional wear, dryness, insects or rats etc. Repair or replace some wires if necessary.
- Tighten all the terminals. Inspect for loose, broken, or burnt wire connections.
- Check and confirm that LED is consistent with required. Pay attention to any troubleshooting or error indication. Take corrective action if necessary.
- Confirm that all the system components are ground connected tightly and correctly.
- Confirm that all the terminals have no corrosion, insulation damaged, high temperature or burnt/discolored sign, tighten terminal screws to the suggested torque.
- Clear up dirt, nesting insects and corrosion in time.
- Check and confirm that lightning arrester is in good condition. Replace a new one in time to avoid damaging of the controller and even other equipment.

WARNING

Risk of electric shock!

Make sure that all the power is turned off before above operations, and then follow the corresponding inspections and operations.

6 Technical Specifications

Electrical Parameters

Item	XTRA 1206N	XTRA 2206N	XTRA 1210N	XTRA 2210N	XTRA 3210N	XTRA 4210N	XTRA 3215N	XTRA 4215N	XTRA 3415N	XTRA 4415N
System nominal voltage	12/24VDC® Auto								12/24/36/48	VDC [®] Auto
Rated charge current	10A	20A	10A	20A	30A	40A	30A	40A	30A	40A
Rated discharge current	10A	20A	10A	20A	30A	40A	30A	40A	30A	40A
Battery voltage range				8~	~32V				8~	68V
Max. PV open circuit voltage	60 46	-			V [®]		150V [®] 138V [®]			
MPP voltage range	` '	tage +2V) \sim		(Battery voltage +2V)∼ 72V				` •	oltage +2V)∼ 08V	
Rated charge power	130W/12V 260W/24V	260W/12V 520W/24V	130W/12V 260W/24V	260W/12V 520W/24V	390W/12V 780W/24V	520W/12V 1040W/24V	390W/12V 780W/24V	520W/12V 1040W/24V	390W/12V 780W/24V 1170W/36V 1560W/48V	520W/12V 1040W/24V 1560W/36V 2080W/48V
Max.	97.9%	98.3%	98.2%	98.3%	98.6%	98.6%	97.6%	97.9%	98.1%	98.5%

conversion efficiency											
Full load efficiency	97%	96.7%	96.2%	96.4%	96.6%	96.5%	95.1%	95.4%	96.9%	97.2%	
Self- consumption		≤14mA(12V) ≤30mA(12V) ≤15mA(24V) ≤16mA(24V)							≤30mA(12V) ≤16mA(24V) ≤13mA(36V) ≤13mA(48V)		
Discharge circuit voltage drop		≤0.23V									
Temperature compensate coefficient®	-3mV/°C/2V (Default)										
Grounding					Commo	n negative					
RS485 interface	5VDC/200mA(RJ45)										
LCD backlight time	Default:60S,Range:0~999S(0S:the backlight is ON all the time)										

- $\ensuremath{\textcircled{1}}$ When lithium battery is used, the system voltage can't be identified automatically.
- ② At minimum operating environment temperature
- 3) At 25°C environment temperature
- ④ When lithium battery is used, the temperature compensate coefficient must be 0,and can't be changed.

Environmental Parameters

lkovo	XTRA	XTRA	XTRA	XTRA	XTRA	XTRA	XTRA	XTRA	XTRA	XTRA
Item	1206N	2206N	1210N	2210N	3210N	4210N	3215N	4215N	3415N	4415N
Environment temperature◆(100%			-25°C~-	+50°C(LCD)				-25°C~-	+45°C(LCD))
input and output)			-30°C~+5	0°C(No LCI	-30°C~+45°C(No LCD)					
Storage temperature range					-20°C	C~+70°C				
Relative humidity					≤95°	%, N.C.				
Enclosure	IP33*									
Pollution degree					-	PD2				

[◆]The controller can full load working in the working environment temperature, When the internal temperature reach to 81°C, the reducing charging power mode is turned on. Refer to P34.

Mechanical Parameters

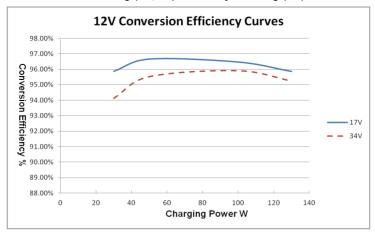
Item	XTRA1206N XTRA1210N	XTRA2206N XTRA2210N	XTRA3210N	XTRA3215N XTRA4210N	XTRA3415N XTRA4215N	XTRA4415N		
Dimension	175×143×48mm	217×158×56.5mm	230×165×63mm	255×185×67.8mm	255×187×75.7mm	255×189×83.2mm		
Mounting dimension	120×134mm	160×149mm	173×156mm	200×176mm	200×178mm	200×180mm		
Mounting hole size		Ф5mm						
Terminal	12AWG(4mm²)	6AWG(16mm ²)						
Recommended	12AWG(4mm²)	10AWG(6mm²)	8AWG(10mm ²)	8AWG(10mm ²)	8AWG(10mm ²)	6AWG(16mm ²)		

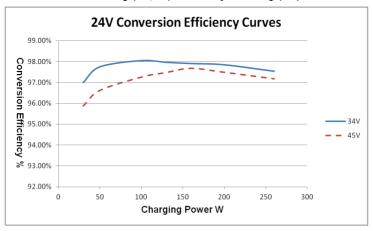
^{★3-}protection against solid objects: protected against solids objects over 2.5mm.

³⁻protected against sprays to 60°from the vertical.

cable				XTRA3215N	XTRA3415N	
				6AWG(16mm ²)	6AWG(16mm ²)	
				XTRA4210N	XTRA4215N	
Weight	0.57kg	0.96kg	1.31kg	1.70kg	2.07kg	2.47kg

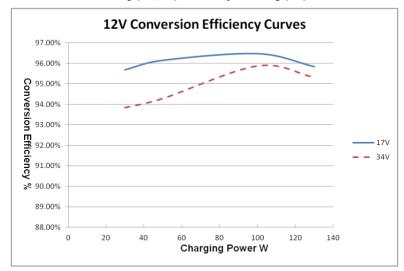
Certification

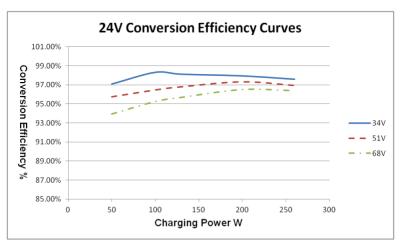

Safety	EN/IEC62109-1, UL1741, CSA C22.2#107.1
EMC(Emission immunity)	EN61000-6-3/EN61000-6-1
FCC	47 CFR Part 15, Subpart B
Performance &function	IEC62509
ROHS	IEC62321-3-1


Annex I Conversion Efficiency Curves

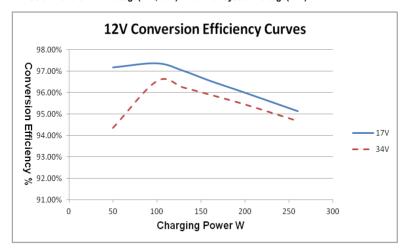
Illumination Intensity: 1000W/m2 Temp: 25°C

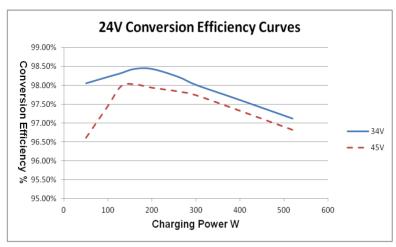
Model: XTRA1206N


1. Solar Module MPP Voltage(17V. 34V) / Nominal System Voltage(12V)

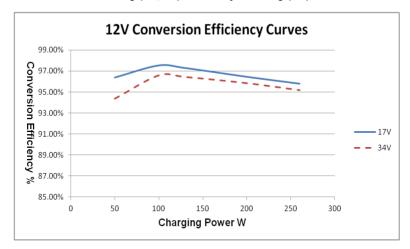


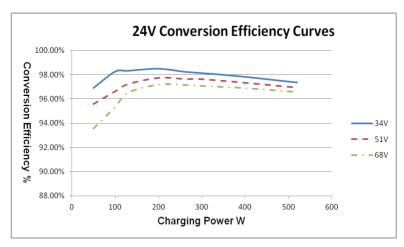
Model: XTRA1210N


1. Solar Module MPP Voltage(17V, 34V) / Nominal System Voltage(12V)

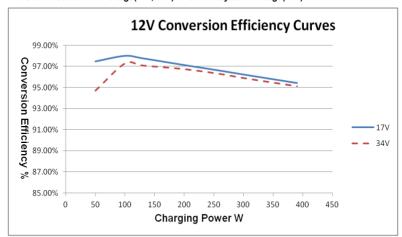


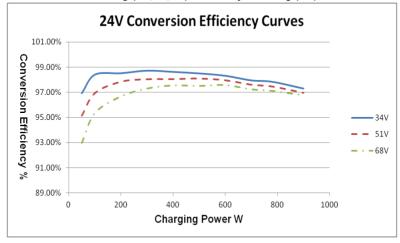
Model: XTRA2206N


1. Solar Module MPP Voltage(17V, 34V) / Nominal System Voltage(12V)

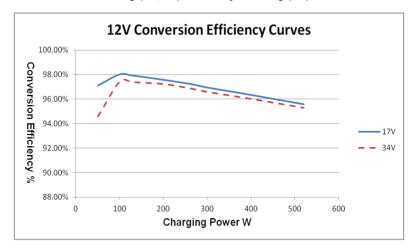


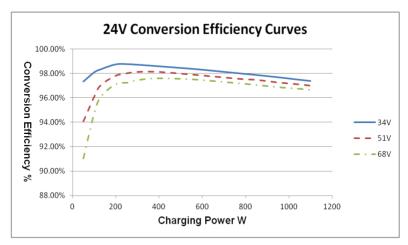
Model: XTRA2210N


1. Solar Module MPP Voltage(17V. 34V) / Nominal System Voltage(12V)

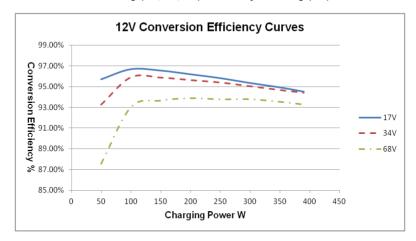


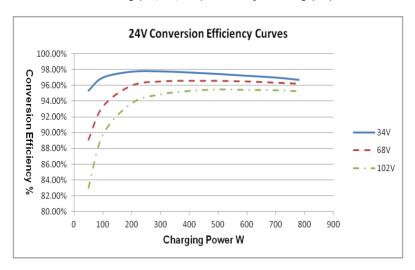
Model: XTRA3210N


1. Solar Module MPP Voltage(17V. 34V) / Nominal System Voltage(12V)

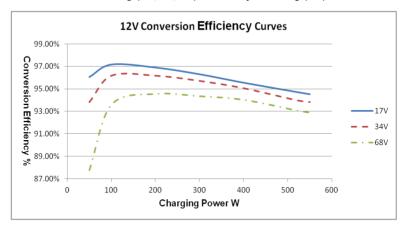


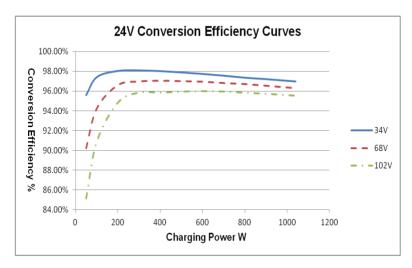
Model: XTRA4210N


1. Solar Module MPP Voltage(17V, 34V) / Nominal System Voltage(12V)

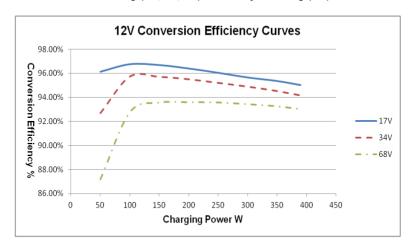


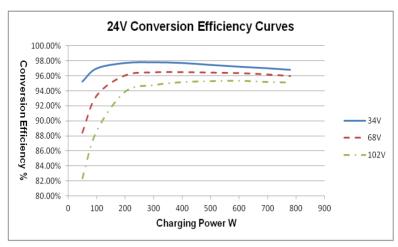
Model: XTRA3215N

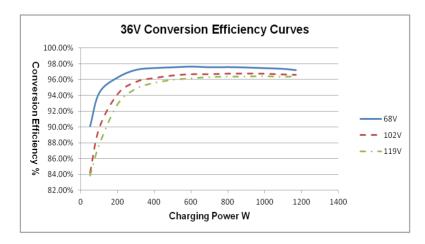

1. Solar Module MPP Voltage(17V, 34V, 68V) / Nominal System Voltage(12V)

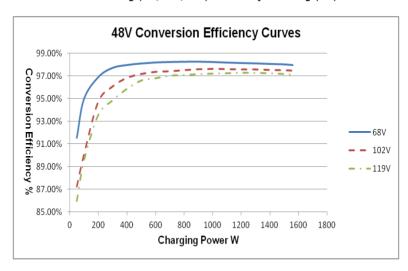


Model: XTRA4215N

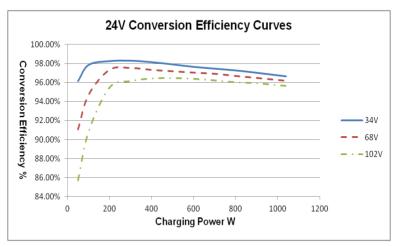

1. Solar Module MPP Voltage(17V, 34V, 68V) / Nominal System Voltage(12V)

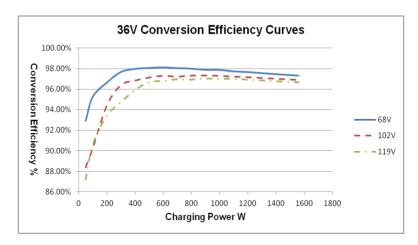



Model: XTRA3415N

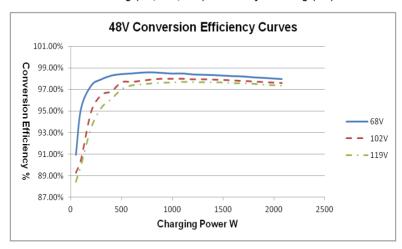

1. Solar Module MPP Voltage(17V, 34V, 68V) / Nominal System Voltage(12V)


3. Solar Module MPP Voltage(68V, 102V, 119V) / Nominal System Voltage(36V)




Model: XTRA4415N

1. Solar Module MPP Voltage(17V, 34V, 68V) / Nominal System Voltage(12V)



3. Solar Module MPP Voltage(68V, 102V, 119V) / Nominal System Voltage(36V)

4. Solar Module MPP Voltage(68V, 102V, 119V) / Nominal System Voltage(48V)

Any changes without prior notice!

Version number: 4.2

VOLTACON UK LIMITED

Coventry UK: +44 2477 675 575 E-mail: info@voltacon.com

Website: www.voltaconsolar.com